在最近的折腾中,发现某个 Python 程序运行,服务了一段时间以后老是占用很多很多的内存。
然后用了 这里 的方法去调查,发现是某个对象没有被释放,在内存中越积累越多。
当然,最后这问题得以解决了,在此将这个问题进行记录,也提醒自己以后不要犯这种问题。
来看其中这样的一组代码(将无关部分暂时隐去,想看完整的可以看这里):
cryptor.py:
#!/usr/bin/env python
#
# Copyright 2012-2015 clowwindy
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import os
import sys
import hashlib
import logging
from shadowsocks import common
from shadowsocks.crypto import rc4_md5, openssl, mbedtls, sodium, table
CIPHER_ENC_ENCRYPTION = 1
CIPHER_ENC_DECRYPTION = 0
METHOD_INFO_KEY_LEN = 0
METHOD_INFO_IV_LEN = 1
METHOD_INFO_CRYPTO = 2
method_supported = {}
method_supported.update(rc4_md5.ciphers)
method_supported.update(openssl.ciphers)
method_supported.update(mbedtls.ciphers)
method_supported.update(sodium.ciphers)
method_supported.update(table.ciphers)
class Cryptor(object):
def __init__(self, password, method, crypto_path=None):
"""
Crypto wrapper
:param password: str cipher password
:param method: str cipher
:param crypto_path: dict or none
{'openssl': path, 'sodium': path, 'mbedtls': path}
"""
self.password = password
self.key = None
self.method = method
self.iv_sent = False
self.cipher_iv = b''
self.decipher = None
self.decipher_iv = None
self.crypto_path = crypto_path
method = method.lower()
self._method_info = Cryptor.get_method_info(method)
if self._method_info:
self.cipher = self.get_cipher(
password, method, CIPHER_ENC_ENCRYPTION,
random_string(self._method_info[METHOD_INFO_IV_LEN])
)
else:
logging.error('method %s not supported' % method)
sys.exit(1)
@staticmethod
def get_method_info(method):
method = method.lower()
m = method_supported.get(method)
return m
def iv_len(self):
return len(self.cipher_iv)
def get_cipher(self, password, method, op, iv):
password = common.to_bytes(password)
m = self._method_info
if m[METHOD_INFO_KEY_LEN] > 0:
key, _ = EVP_BytesToKey(password,
m[METHOD_INFO_KEY_LEN],
m[METHOD_INFO_IV_LEN])
else:
# key_length == 0 indicates we should use the key directly
key, iv = password, b''
self.key = key
iv = iv[:m[METHOD_INFO_IV_LEN]]
if op == CIPHER_ENC_ENCRYPTION:
# this iv is for cipher not decipher
self.cipher_iv = iv
return m[METHOD_INFO_CRYPTO](method, key, iv, op, self.crypto_path)
def encrypt(self, buf):
if len(buf) == 0:
return buf
if self.iv_sent:
return self.cipher.encrypt(buf)
else:
self.iv_sent = True
return self.cipher_iv + self.cipher.encrypt(buf)
def decrypt(self, buf):
if len(buf) == 0:
return buf
if self.decipher is None:
decipher_iv_len = self._method_info[METHOD_INFO_IV_LEN]
decipher_iv = buf[:decipher_iv_len]
self.decipher_iv = decipher_iv
self.decipher = self.get_cipher(
self.password, self.method,
CIPHER_ENC_DECRYPTION,
decipher_iv
)
buf = buf[decipher_iv_len:]
if len(buf) == 0:
return buf
return self.decipher.decrypt(buf)
def gen_key_iv(password, method):
method = method.lower()
(key_len, iv_len, m) = method_supported[method]
if key_len > 0:
key, _ = EVP_BytesToKey(password, key_len, iv_len)
else:
key = password
iv = random_string(iv_len)
return key, iv, m
def encrypt_all_m(key, iv, m, method, data, crypto_path=None):
result = [iv]
cipher = m(method, key, iv, 1, crypto_path)
result.append(cipher.encrypt_once(data))
return b''.join(result)
def decrypt_all(password, method, data, crypto_path=None):
result = []
method = method.lower()
(key, iv, m) = gen_key_iv(password, method)
iv = data[:len(iv)]
data = data[len(iv):]
cipher = m(method, key, iv, CIPHER_ENC_DECRYPTION, crypto_path)
result.append(cipher.decrypt_once(data))
return b''.join(result), key, iv
def encrypt_all(password, method, data, crypto_path=None):
result = []
method = method.lower()
(key, iv, m) = gen_key_iv(password, method)
result.append(iv)
cipher = m(method, key, iv, CIPHER_ENC_ENCRYPTION, crypto_path)
result.append(cipher.encrypt_once(data))
return b''.join(result)
这个的目的主要就是对于发送来的数据进行加解密,使用的时候将这个类实例化,或者直接调用最后的三个方法来加解密数据。
然后是这个,我们拿泄露的那个对象所在的 openssl 来说
class OpenSSLCryptoBase(object):
"""
OpenSSL crypto base class
"""
def __init__(self, cipher_name, crypto_path=None):
self._ctx = None
self._cipher = None
if not loaded:
load_openssl(crypto_path)
cipher_name = common.to_bytes(cipher_name)
cipher = libcrypto.EVP_get_cipherbyname(cipher_name)
if not cipher:
cipher = load_cipher(cipher_name)
if not cipher:
raise Exception('cipher %s not found in libcrypto' % cipher_name)
self._ctx = libcrypto.EVP_CIPHER_CTX_new()
self._cipher = cipher
if not self._ctx:
raise Exception('can not create cipher context')
self.encrypt_once = self.update
self.decrypt_once = self.update
def update(self, data):
"""
Encrypt/decrypt data
:param data: str
:return: str
"""
global buf_size, buf
cipher_out_len = c_long(0)
l = len(data)
if buf_size < l:
buf_size = l * 2
buf = create_string_buffer(buf_size)
libcrypto.EVP_CipherUpdate(
self._ctx, byref(buf),
byref(cipher_out_len), c_char_p(data), l
)
# buf is copied to a str object when we access buf.raw
return buf.raw[:cipher_out_len.value]
def __del__(self):
self.clean()
def clean(self):
if self._ctx:
ctx_cleanup(self._ctx)
libcrypto.EVP_CIPHER_CTX_free(self._ctx)
class OpenSSLAeadCrypto(OpenSSLCryptoBase, AeadCryptoBase):
"""
Implement OpenSSL Aead mode: gcm, ocb
"""
def __init__(self, cipher_name, key, iv, op, crypto_path=None):
OpenSSLCryptoBase.__init__(self, cipher_name, crypto_path)
AeadCryptoBase.__init__(self, cipher_name, key, iv, op, crypto_path)
key_ptr = c_char_p(self._skey)
r = libcrypto.EVP_CipherInit_ex(
self._ctx,
self._cipher,
None,
key_ptr, None,
c_int(op)
)
if not r:
self.clean()
raise Exception('can not initialize cipher context')
r = libcrypto.EVP_CIPHER_CTX_ctrl(
self._ctx,
c_int(EVP_CTRL_AEAD_SET_IVLEN),
c_int(self._nlen),
None
)
if not r:
self.clean()
raise Exception('Set ivlen failed')
self.cipher_ctx_init()
def cipher_ctx_init(self):
"""
Need init cipher context after EVP_CipherFinal_ex to reuse context
:return: None
"""
iv_ptr = c_char_p(self._nonce.raw)
r = libcrypto.EVP_CipherInit_ex(
self._ctx,
None,
None,
None, iv_ptr,
c_int(CIPHER_ENC_UNCHANGED)
)
if not r:
self.clean()
raise Exception('can not initialize cipher context')
AeadCryptoBase.nonce_increment(self)
def set_tag(self, tag):
"""
Set tag before decrypt any data (update)
:param tag: authenticated tag
:return: None
"""
tag_len = self._tlen
r = libcrypto.EVP_CIPHER_CTX_ctrl(
self._ctx,
c_int(EVP_CTRL_AEAD_SET_TAG),
c_int(tag_len), c_char_p(tag)
)
if not r:
self.clean()
raise Exception('Set tag failed')
def get_tag(self):
"""
Get authenticated tag, called after EVP_CipherFinal_ex
:return: str
"""
tag_len = self._tlen
tag_buf = create_string_buffer(tag_len)
r = libcrypto.EVP_CIPHER_CTX_ctrl(
self._ctx,
c_int(EVP_CTRL_AEAD_GET_TAG),
c_int(tag_len), byref(tag_buf)
)
if not r:
self.clean()
raise Exception('Get tag failed')
return tag_buf.raw[:tag_len]
def final(self):
"""
Finish encrypt/decrypt a chunk (<= 0x3FFF)
:return: str
"""
global buf_size, buf
cipher_out_len = c_long(0)
r = libcrypto.EVP_CipherFinal_ex(
self._ctx,
byref(buf), byref(cipher_out_len)
)
if not r:
self.clean()
# print(self._nonce.raw, r, cipher_out_len)
raise Exception('Finalize cipher failed')
return buf.raw[:cipher_out_len.value]
def aead_encrypt(self, data):
"""
Encrypt data with authenticate tag
:param data: plain text
:return: cipher text with tag
"""
ctext = self.update(data) + self.final() + self.get_tag()
self.cipher_ctx_init()
return ctext
def aead_decrypt(self, data):
"""
Decrypt data and authenticate tag
:param data: cipher text with tag
:return: plain text
"""
clen = len(data)
if clen < self._tlen:
self.clean()
raise Exception('Data too short')
self.set_tag(data[clen - self._tlen:])
plaintext = self.update(data[:clen - self._tlen]) + self.final()
self.cipher_ctx_init()
return plaintext
class OpenSSLStreamCrypto(OpenSSLCryptoBase):
"""
Crypto for stream modes: cfb, ofb, ctr
"""
def __init__(self, cipher_name, key, iv, op, crypto_path=None):
OpenSSLCryptoBase.__init__(self, cipher_name, crypto_path)
key_ptr = c_char_p(key)
iv_ptr = c_char_p(iv)
r = libcrypto.EVP_CipherInit_ex(self._ctx, self._cipher, None,
key_ptr, iv_ptr, c_int(op))
if not r:
self.clean()
raise Exception('can not initialize cipher context')
self.encrypt = self.update
self.decrypt = self.update
ciphers = {
'aes-128-cfb': (16, 16, OpenSSLStreamCrypto),
'aes-192-cfb': (24, 16, OpenSSLStreamCrypto),
'aes-256-cfb': (32, 16, OpenSSLStreamCrypto),
'aes-128-ofb': (16, 16, OpenSSLStreamCrypto),
'aes-192-ofb': (24, 16, OpenSSLStreamCrypto),
'aes-256-ofb': (32, 16, OpenSSLStreamCrypto),
'aes-128-ctr': (16, 16, OpenSSLStreamCrypto),
'aes-192-ctr': (24, 16, OpenSSLStreamCrypto),
'aes-256-ctr': (32, 16, OpenSSLStreamCrypto),
'aes-128-cfb8': (16, 16, OpenSSLStreamCrypto),
'aes-192-cfb8': (24, 16, OpenSSLStreamCrypto),
'aes-256-cfb8': (32, 16, OpenSSLStreamCrypto),
'aes-128-cfb1': (16, 16, OpenSSLStreamCrypto),
'aes-192-cfb1': (24, 16, OpenSSLStreamCrypto),
'aes-256-cfb1': (32, 16, OpenSSLStreamCrypto),
'bf-cfb': (16, 8, OpenSSLStreamCrypto),
'camellia-128-cfb': (16, 16, OpenSSLStreamCrypto),
'camellia-192-cfb': (24, 16, OpenSSLStreamCrypto),
'camellia-256-cfb': (32, 16, OpenSSLStreamCrypto),
'cast5-cfb': (16, 8, OpenSSLStreamCrypto),
'des-cfb': (8, 8, OpenSSLStreamCrypto),
'idea-cfb': (16, 8, OpenSSLStreamCrypto),
'rc2-cfb': (16, 8, OpenSSLStreamCrypto),
'rc4': (16, 0, OpenSSLStreamCrypto),
'seed-cfb': (16, 16, OpenSSLStreamCrypto),
# AEAD: iv_len = salt_len = key_len
'aes-128-gcm': (16, 16, OpenSSLAeadCrypto),
'aes-192-gcm': (24, 24, OpenSSLAeadCrypto),
'aes-256-gcm': (32, 32, OpenSSLAeadCrypto),
'aes-128-ocb': (16, 16, OpenSSLAeadCrypto),
'aes-192-ocb': (24, 24, OpenSSLAeadCrypto),
'aes-256-ocb': (32, 32, OpenSSLAeadCrypto),
}
可以看到,分为三个类,OpenSSLStreamCrypto 流加密类,OpenSSLAeadCrypto AEAD加密类,OpenSSLCryptoBase 基础加密类,前二者继承后者,在这上面重写方法来实现各自所需要的实现的特性。
总结来看,就和个链条一样, encrypt 里有个 Encrypt 类,这个类下调用 crypto 文件夹里各种加密库的类,将其包装好以便使用。
而就是前面这两个对象存在内存泄漏问题,没有被 Python 的垃圾回收机制给回收掉。
当然我们从这个项目的 commit 里也可以看到,之前的维护者做了很多努力,想解决这个问题,比如在抛出异常的时候调用 clean,将对象回收掉,但就下面的反馈来看似乎作用不太大,算是治标不治本。
Python 是判断对象还有没有在被调用来判断这个对象该不该回收的,所以就得从这个方面入手,看看有哪些该标记为没有被调用的对象还在被调用。
首先我想到的就是重写 encrypt 里的 _del_ 方法,这个是 Python 销毁对象的时候系统内部调用的方法。我就尝试重写了 _del_ ,在其中调用 crypto 里对应加密库类的 clean 方法。然后测试运行发现,内存泄露的速度确实减缓了一些,但也还是没有真正的解决问题。
再后来仔细观察,发现 主要就是 OpenSSL 流加密的对象泄露得最快,而 AEAD 的泄露又似乎少了一些。而对于其他的加密库,似乎并没有内存泄露。
再尝试用 objgraph 看了看(其实一开始就应该用这个看一看的),发现是 self.update 这个方法一直被调用着,导致对象无法被释放。
再仔细看看代码,发现为了使代码优雅一些,对于加密的调用分为四个方法 encrypt, decrypt, encrypt_once, decrypt_once 。Encrypt 类分别调用这四个方法,来实现不同的加密操作。
对于流加密来说,encrypt, decrypt, encrypt_once, decrypt_once 其实都是指向所调用的加密库类的 update 方法,在代码中是以下面的形式调用的(省略掉无关的代码了)。
class OpenSSLCryptoBase(object):
def __init__(self, cipher_name, crypto_path=None):
self.encrypt_once = self.update
self.decrypt_once = self.update
class OpenSSLStreamCrypto(OpenSSLCryptoBase):
def __init__(self, cipher_name, key, iv, op, crypto_path=None):
self.encrypt = self.update
self.decrypt = self.update
而对于 AEAD 来说,则是下面这样
class OpenSSLCryptoBase(object):
def __init__(self, cipher_name, crypto_path=None):
self.encrypt_once = self.update
self.decrypt_once = self.update
class OpenSSLAeadCrypto(OpenSSLCryptoBase, AeadCryptoBase):
def __init__(self, cipher_name, key, iv, op, crypto_path=None):
......
在 aead.py 的 AeadCryptoBase 类里:
class AeadCryptoBase(object):
def __init__(self, cipher_name, key, iv, op, crypto_path=None):
self.encrypt_once = self.aead_encrypt
self.decrypt_once = self.aead_decrypt
存在这样的引用,组成了 AEAD 的加密方法的引用。
然后我就怀疑,是不是这种引用上存在一些坑,导致了对象在使用完毕后无法被正确地被系统识别和回收。
尝试将这些引用进行改写,比如
self.encrypt_once = self.update
将其改写为
def encrypt_once(self, data):
return self.update(data)
原先是 Encrypt 类调用 加密库类里“包装”好了的加密方法(encrypt, decrypt, encrypt_once, decrypt_once),加密库对外方法根据情况直接引用自身的方法引用方法,比如 在 流加密里 上面这四个函数都是指向自身的 update 方法,AEAD 里则是有两个是自身所拥有的方法,而另外两个则是指向自身的 update 方法。
而改写之后,就不是直接指向了,由改写之后的方法作为中转,在其中再调用各自应该调用的方法。
这样改写之后,经过长时间的测试,就再也没有发现内存泄露了,内存长时间的占用都维持在一个低位水平了。
原因分析,只能就我个人的猜测来说,我觉得是原先的引用方式,是直接引用的,调用到的直接是最终的函数了,这样调用确实是方便,减少了一些代码量。但这样每次调用之后,就需要对每个对象进行彻底的标记和释放,如果不标记,这样链式引用会造成系统无法知道从何处回收起,从而也就一直不被回收了。当然- -如果不嫌麻烦- -而且心够细的话,能在使用之后进行精确的标记,能让系统回收,那也行。
而改写之后,就不存在链式引用了,外部调用的就相当于调用被调用对象的自身方法了,从而系统能在这个对象使用完之后进行正确的回收。
对于自己来说,在以后的开发中也要自己注意一下,尽量不要进行类似的链式引用。

9 个评论
无人小站
Py大佬
glzjin
并不是
_admin
大佬喜欢py交易
glzjin
不喜欢。
123
hahahaha native
西园美鸟
见过 Windows 7 模块安装程序也会泄漏 早上起来 快 2 GB了
西园美鸟
Windows Modules Installer TrustedInstaller.exe ,以前安装系统更新在 task manager 中看到的。感觉特别卡
glzjin
那就很尴尬了- –
Viplikes Company
Thank you for this article! I will use this info